
SOLVENT-INDUCED ASSOCIATION OF POLYMERS: CLUSTERING AND
NETWORK FORMATION

Julius POUCHLÝ1,*, Antonín ŽIVNÝ2 and Antonín SIKORA3

Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic,
162 06 Prague 6, Czech Republic; e-mail: 1 pouchly@imc.cas.cz, 2 zivny@seznam.cz,
3 sikora@imc.cas.cz

Received March 18, 2005
Accepted June 22, 2005

A thermodynamic treatment of a random, solvent-assisted association of polyfunctional
macromolecules is developed. In the model proposed, a multiple association junction con-
necting m primary chains consists of m polymer functional groups with bm solvent mole-
cules incorporated. Using Veytsman’s procedure, basic thermodynamic functions and associ-
ation equilibrium relations are derived. Different association characteristics are examined.
When passing from a system with solvent-free junctions (b = 0) to our model with b > 0, the
shape of the calculated curves changes strikingly, e.g. the relative association degree α van-
ishes both in the neat solvent and neat polymer points, showing a maximum near the mid-
dle of the composition range. This results in the existence of two critical points of network
formation (gel points), delimitating the compositional range of the coexistence of a network
with finite clusters (gel region). Using extinction probability, the quantitative parameters
characterizing the cluster–network relationships are calculated and analyzed. All of them dis-
play an extreme near the middle of the gel region, and various kinds of singularities appear
in the two gel points. The effect of the stoichiometric ratio b on characteristic system pa-
rameters is discussed.
Keywords: Polymer association theory; Functional group association equilibrium; Multiple
chain junctions; Solvent-complexed chain junctions; Two gel points; Sol–gel relationships.

Very frequently, the association of macromolecules in solution is due to the
chain heterogeneity. The association sites are constituted by chain seg-
ments that differ from the rest of the molecule in polarity, hydrophobicity,
stereoregularity, chain geometry or conformation. If these sequences are
long enough and uniform in length, compact monodisperse micelles can
arise. This way of aggregation is highly cooperative and is called closed as-
sociation1. On the other hand, open association occurs with molecules con-
taining short sequences capable of aggregation into chain junctions (ana-
logues of crosslinks in chemical gelation). Association sites of this kind will
be called functional groups. If they appear at chain ends only, the associa-
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tion is, according to Elias1, molecule-related; the macromolecules join
themselves into long linear superchains with improved mass uniformity. If
the functional groups are interspersed along the chain, segment-related as-
sociation occurs and randomly branched clusters arise showing very high
mass-nonuniformity which may result in their coexistence with an infinite
network structure. The random association of polyfunctional molecules will
be the subject of the present work.

The dynamic and rheological behavior of an associating system depends
strongly on the junction multiplicity, i.e. on the number of macromole-
cules that contribute to the formation of a junction. If m functional groups
of different macromolecules aggregate, an m-fold junctions are formed from
which 2m amorphous subchains radiate. While a multiple junction itself
may exhibit some structural organization, the selection and combination of
functional groups into a junction is random, and the same then holds for
the architecture of the branched structures and the network.

Existing theories of polyfunctional polymer association are based on
equilibrium statistical thermodynamics. Usually they are motivated and
presented as theories of thermoreversible gelation, as the formation of
physical gels is considered to be one of the most important features of this
kind of association. Stockmayer was the first that took the existence of mul-
tiple junctions into consideration2. Tanaka analyzed different aspects of the
phenomenon in numerous papers (for a review, see ref.3). Semenov and
Rubinstein applied a different computation strategy. They extended interest
to consequences of intramolecular bridging in dilute solutions, and also
brought critical remarks on some papers in the field4. Kudlay and
Erukhimovich studied specific features of phase separation, as induced by
the presence of multiple junctions5.

Experimental data indicate that arrangement of chain segments into mul-
tiple junctions often requires inclusion of solvent molecules6. Complexes
and intercalates arise with a defined solvent–polymer ratio. The incorpora-
tion ability of a particular solvent is independent of the polarity and the
contact interaction parameter occurring in polymer solution theory7 and is
determined by other factors, e.g. steric complementarity of solvent mole-
cules with the polymer elements of the junction. The solvent participation
has not been taken into account as yet in theoretical work, although it
strongly affects the concentration dependence of the association degree of
cluster and network parameters as well as the limits of phase instability re-
gions. In this paper, we analyze the influence of the parameter b, defined as
the ratio of the number of solvent molecules in a junction to the corre-
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sponding number of polymer functional groups (i.e. to junction multiplic-
ity).

While the Stockmayer–Tanaka theory2 is based on a detailed mathemati-
cal description of equilibrium size distribution of association clusters, the
starting point of other authors4,5 is the equilibrium between associated and
free functional groups irrespective of their appurtenance to clusters. We
have preferred the latter approach. Starting from a partition function de-
rived by Veytsman’s procedure8, we characterize the association and net-
work formation in model systems. Another paper is in preparation, dealing
with phase stability.

Basic Equations

In the Flory–Huggins model, a macromolecule is constituted by a sequence
of r segments. The solution volume is divided into N segment sites, each of
which can accommodate one segment of polymer A or one molecule of sol-
vent B. A balance equation holds

N rN N= +A B . (1)

Weak contact interactions follow the random mixing statistics. For the
Helmholtz energy of mixing we have

∆F k T N N NBinert A A B B B A/ ln ln= + +ϕ ϕ χ ϕ (2)

where ϕK is the volume fraction of component K (K ≡ A; B). The contact-
interaction parameter χ is related to one segment. The subscript “inert”
means absence of association.

Now we assume that the macromolecule contains f functional groups
(“stickers”) different from the other elements of the chain so that they may
form association junctions with other functional groups of the same char-
acter. The origin of such a junction may stipulate incorporation of solvent
molecules. Following Veytsman, we shall evaluate the Helmholtz energy
change accompanying the formation of junctions. Let one junction be con-
stituted by m functional groups and bm solvent molecules (m ≥ 2, b ≥ 0). To
produce M junctions, we have to choose mM of the total fNA functional
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groups and bmM of the total NB solvent molecules. The number of ways of
doing that is the selection factor S

S
fN N

fN mM mM N bmM bmM
=

− −
( ) ! !

( ) !( ) !( ) !( ) !
A B

A B

. (3)

The elements chosen are to be distributed into M ordered sets, each con-
taining m functional groups and bm solvent molecules. The corresponding
combinatorial factor is

C
mM bmM

M
= ( ) !( ) !

!
. (4)

Finally we have to put down the association factor A, describing aggrega-
tion in the sets of elements constructed in the preceding step.

a) Before association, the m + bm elements of a given set are essentially
independent in thermal motion, so that each of them is free to visit succes-
sively each of the N segment sites. After aggregation they are bound to
move jointly and the association partition function diminishes by a factor
Nβ, where

β = + −m bm 1 . (5)

b) On association, new interactions (“bonds”) arise between the elements
assembled, whereby energy is released and changes in numbers of degrees
of freedom of overall and intramolecular rotation occur. The Helmholtz en-
ergy change Fb pertaining to this process is a function of parameters b and
m, the form of the dependence being determined by the topological struc-
ture, geometry and flexibility of the junction.

For M junctions, the association factor is

A N MF k TM
b= −−β exp( / ) .B (6)

The overall contribution of the association process to the partition function
is the product of three factors given by Eqs (3), (4) and (6). Herefrom the
Helmholtz energy of association is obtained using the Stirling formula
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F k T fN mM fN mM fN fN

N bmM
assoc B A A A A

B

/ ( )ln( ) ln( )

( )

= − − − +
+ − ln( ) ln

ln ln / .

N bmM N N

M M M M M MF k Tb

B B B

B

− − +
+ + + +β β

(7)

On minimizing Fassoc with respect to M, we find the condition of associa-
tion equilibrium, which can be rearranged to

ln( / ) / ln[( )/ ] ln[( )/ ]M N F k T m fN mM N bm N bmM Nb= − + − + −B A B (8a)

or

X y ym bm= η A B (8b)

where η is the equilibrium constant

η = −m F k Tbexp( / ) ,B (9)

X is the concentration of associated functional groups

X mM N= / (10)

and yA, yB are the concentrations of free functional groups A or molecules
of B, respectively. The concentrations defined here are bound by mass bal-
ance equations

( / )f r y Xϕ A A= + (11)

ϕ B B= +y bX (12)

or, substituting from Eq. (8),

( / )f r y y ym bmϕ ηA A A B= + (13)
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ϕ ηB B A B= +y b y ym bm . (14)

As it follows from the previous discussion of Fb and Eq. (9), η is a non-
transparent function of the junction multiplicity m. For the sake of simplic-
ity, we adhere in this work to a dependence introduced by other authors2,5,
namely

η = −km 1 (15)

where k is a constant.
Substituting from Eq. (8a) to Eq. (7) and using Eqs (10) to (12), we obtain

the Helmholtz energy at association equilibrium

F k T fN y f r N y N X massoc B A A A B B B/ ln [ /( / )] ln( / ) / .= + +ϕ ϕ β (16)

The total change of Helmholtz energy on mixing can be obtained as the
sum

∆ ∆F F F F= + −inert assoc assoc
o . (17)

Here, Fassoc
o is Fassoc

o for ϕA = 1 and is used to keep consistency with Eq. (2),
where the standard state is that of the pure amorphous substance. Substi-
tuting into Eq. (17), we have

∆F k T N N f y y

N y N X X

/ ln ln[ /( )]

ln (
B A A A A A A

o

B B A A
o

= + +

+ + −

ϕ ϕ

β ϕ )/ .m N+ B Aχϕ
(18)

The concentrations y A
o and XA

o are related to the standard state.
Herefrom we obtain the chemical potentials µA, µB using the conven-

tional formulas and respecting the functional dependence of X, yA and yB
on ϕA:

∆µ ϕ ϕ ϕ β χA A B A A A
o

A
o/ ln ( ) ln[ /( )] ( )/RT r f y y r X X m r= − − + + − +1 ϕ B

2 (19)
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∆µ ϕ β χϕB B A A/ ln ( / ) / .RT y r X m= + − + +1 1 2 (20)

Basic Parameters of Association

To express the relative amount of functional groups engaged in association,
two quantities will be useful, namely α and z

α ϕ= = + −X f r z z/( / ) ( )A 1 1 (21)

z X y ky ym bm+ = −/ ( ) .A A B
1 (22)

The parameter α corresponds to the “conversion” used in chemical equilib-
rium thermodynamics. Here, it will be called degree of association. It ex-
presses the probability that a given functional group participates in forming
a junction.

The dependence of α on ϕA has been discussed5 for various values of m in
systems where the solvent does not enter into the junctions. In our Fig. 1,
curves are shown for junctions of multiplicity 2, 4 and 6 at the same value
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FIG. 1
The association degree α as a function of composition at various values of junction multiplic-
ity m and solvent proportion b. r = 100, f = 10, k = 40. Dashed lines m = 2, full lines m = 4, dot-
ted lines m = 6, � gel points. Curves are labeled by b values
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of equilibrium constant k and various values of b. The participation of sol-
vent in junction formation affects the shape of the curves conspicuously.

In the range of small ϕA, the initial section of the curve resembles a
straight line for m = 2, while for m > 2 it approaches a parabola of (m – 1)-th
degree

α ϕ= − −( / ) .kf r m m1 1
A (23)

The higher the exponent m – 1, the higher concentration is necessary to
achieve a certain value of α. As an asymptote, Eq. (23) is valid for any value
of b.

If b = 0 (no solvent in the junctions), the association degree increases
monotonically with concentration. For b > 0, the α–ϕA curves reach a maxi-
mum and then decrease due to lack of solvent at higher ϕA. At small ϕB, the
curves assume a parabolic shape

α ϕ= −( / ) .kf r m bm1
B (24)

Thus the degree of association approaches zero both in the left- and the
right-hand periphery of the graph in Fig. 1. As we chose b ≥ 1, the exponent
of ϕB in Eq. (24) is higher than that of ϕA in Eq. (23).

The association gives rise to complex polymer–solvent clusters of general
formula AiBj. The subscript i, giving the number of macromolecules incor-
porated in a particular cluster, will be called association number. In our
model, for a ring-free cluster, the subscripts i and j are related to l, the num-
ber of m-fold junctions:

i m l j bml= + − =1 1( ) . (25)

Therefore, ring-free clusters are fully defined by their subscript i. This will
find use in the form of following summations. To obtain average values of
association number, we define the statistical moment function

I in
n

i
i

=
=
∑ ν

1

(26)
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for n = 0, 1, 2, ... . Here νi = Ni/N stands for the number density of clusters
containing i macromolecules. In the absence of an infinite association net-
work

I i
i

0
1

=
=
∑ ν (27)

I r1 = ϕ A/ . (28)

It can be shown9 that the concentration of a finite-size cluster is given by
an equilibrium relation

v K p pij ij
i j= A B (29)

where pA and pB are the number densities of “monomers”, i.e. non-
associated molecules of components A and B, respectively, and Kij is the
equilibrium constant of ij-cluster formation. Introducing Eq. (29) into
Eq. (26), we obtain

I i K p pn
n

i
i

i j=
=
∑

1
A B . (30)

Therefrom it follows

I I p p p0 1= =∫ ( / ) [ .]A A Bd const (31)

I I p p2 1= =( / ln ) [ .].∂ ∂ A B const (32)

Using these equations together with Eqs (28) and (13), we can calculate I0
and I2 from I1, if we indeed know the relationship between yA and pA. This
cannot be provided by the Veytsman procedure, which expresses the ther-
modynamic functions in terms of concentrations of free or associated func-
tional groups irrespective of the cluster size. Therefore we take a similar way
as given in ref.4
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A macromolecule exists as an isolated linear entity if all of its f functional
groups are free. Assuming that the functional groups are independent of
each other, the probability of the event is

P i zf f( ) ( ) ( ) .= = − = + −1 1 1α (33)

According to Eq. (28), the number density of all macromolecules present is
I1 so that the concentration of isolated molecules is

p I z f
A = + −

1 1( ) . (34)

As the solvent is monofunctional (fB = 1), we see immediately

p yB B= . (35)

Following the prescription given by Eqs (31) and (32) and using Eqs (13),
(22) and (34) together with their differentiated forms, we can obtain I0 and
I2 from I1. After all, we arrive at the relations

I r m X m0 1= − −ϕ A/ ( ) / (36)

I I
f r m X

f r f m X2 1

1

1 1
= =

+ −
− − −

ϕ
ϕ

A

A

/ ( )

/ ( )( )
. (37)

On the right-hand side of Eq. (36), ϕA/r is the nominal number density of
the polymer, while the other term expresses the decrease in number density
of polymer entities (isolated molecules and clusters) if X/m junctions of
multiplicity m arise in unit volume and if ring formation can be neglected.
The difference of the two terms corresponds to the number density of all
polymer species consistently with the definition (27).

Based on Eqs (28), (36), (37) and (21), we can express the number and
mass averages of the association number as a function of the association
degree

〈 〉 = = − − −i I I m f mn 1 0
11 1/ [ ( ) / ]α (38)

〈 〉 = = + −
− − −

i I I
m

f mw 2 1

1 1
1 1 1

/
( )

( )( )
.

α
α

(39)
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To obtain the molar mass of a cluster i-mer, we take into consideration
that for i > 1 every cluster contains a certain amount of solvent. The rela-
tion between stoichiometric indices i and j is given by Eq. (25); herefrom
the molar mass of a cluster i-mer can be obtained

M i M M Mi = + ′ − ′( )A B B (40)

where MA, MB are nominal molar masses of the components A, B and

′ = −M M bm mB B /( ) .1 (41)

Neglecting the last term on the right-hand side of Eq. (40), the molar mass
averages of the clusters are obtained

M
i

M
i

M M bm mn

n

w

w
A B〈 〉

=
〈 〉

= + −/( ) .1 (42)

The operations prescribed by Eqs (31) and (32) have been performed at
constant free solvent concentration yB, so that the ratio b does not enter ex-
plicitly into Eqs (38) and (39). Thus, the form of these equations is inde-
pendent of the presence of solvent in junctions; however, α itself is de-
pendent on the coefficient b, and the same is true for the average associa-
tion number.

Condition of Existence of an Infinite Association Network

If the association degree α assumes the critical value

α*
( )( )

=
− −

1
1 1f m

(43)

a singularity appears in Eq. (39) and the mass-average association number
tends to infinity. This can be interpreted as inception of an infinite net-
work structure, giving rise to a gel if the physical junctions have sufficient
strength and lifetime. The network is penetrated by finite polymer clusters
and the solvent. For the brevity sake, the singularity point discussed will be
given the name “gel point”.

Equation (43) is of the same form as the relation derived by Yamabe and
Fukui10 for a network based on multiple covalent junctions, and for m = 2
we have the classical gel point condition of Flory. Due to its connection

Collect. Czech. Chem. Commun. (Vol. 70) (2005)

Solvent-Induced Association of Polymers 1997



with Eq. (39), the critical value α* is independent of the stoichiometric ra-
tio b and is the same as in the case of solvent-free junctions. α* indeed cor-
responds to a different nominal polymer volume fraction ϕ Α

* . This is illus-
trated by the points on the α–ϕA curves in Fig. 1.

Using Eqs (21) and (22), we can rewrite the condition of the gel point

( ) /* *ky ym bm
A B

− =1 1ψ (44a)

or

z* /= 1ψ (44b)

where

ψ = − −fm f m . (45)

Using mass balances (13) and (14), we transform Eq. (44a) into

k f r
bf r

m bm

( / )
/* *ϕ ψ

ψ ψ
ϕA A+









 − +

+


















−

1
1 1

1

1

= 1/ψ (46)

which correlates ϕ Α
* with the system parameters immediately. In Fig. 2 the

equilibrium constant calculated using Eq. (46) is plotted against ϕ Α
* to illus-

trate the ensuing discussion.
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FIG. 2
The parameter k* (i.e. gel point value of k) as a function of gel point composition ϕA

* at various
values of junction multiplicity m and solvent proportion b. r = 1000, f = 100. Dashed lines m = 2,
full lines m = 4. Curves are labeled by b values
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Let us look first at the case b = 0. Then Eq. (46) can be to a good approxi-
mation put into the form

k f r f m m( / ) [ ( )] .* / ( )ϕ A = − − −1 1 1 (47)

We see that the gel point concentration ϕ Α
* diminishes with increasing

equilibrium parameter k and the density of functional groups along the
chain, f/r. This result could have been expected also on the basis of the crit-
ical conversion relation Eq. (43) combined with Eq. (23), showing that ϕ Α

*

reflects a decrease in α* with f. On the other hand, Eq. (47) reads that the
influence of m is opposite to that of f. This is due to the difficulty of forma-
tion of high-multiplicity junctions at smaller concentrations, as can be seen
from the curves passing through the gel points in Fig. 1.

If the solvent enters into the association junctions (b > 0) then Eq. (47)
holds in the range of small ϕ Α

* only. Otherwise we have to replace ϕ Α
* by a

function ensuing from Eq. (46) for r >> 1 and f >> 1

f bm m( ) ( ) .* * * / ( )ϕ ϕ ϕA A A= − −1 1 (48)

This function has a maximum at

ϕ βA,max
* ( ) /= −m 1 (49)

corresponding to a minimum of k* in Fig. 2. Evidently, for b > 0 and k* >
k*min, there are two solutions to Eq. (46), ϕ Α1

* and ϕ Α2
* . The association net-

work can only exist in the range of volume fractions limited by these val-
ues. This range will be called gel region and its limits – the first and the sec-
ond gel point. In the gel region, the moment function I2 assumes negative
values and Eqs (38) and (39) lose validity.

Now let us deal with the two gel points separately. To discuss the first gel
point, we have simply to replace ϕ Α

* by ϕ Α1
* in Eq. (47) and the following

section. Concerning the second gel point, we assume that ϕ Α2
* is not very

far from the right-hand border of the ϕ A
* range. Then Eq. (46) can be ap-

proximated by
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( / ) [ ( )]( )/ * /kf r f mm bm bm− −= −1 11ϕ B2 (50)

where ϕ B2
* = 1 – ϕ A2

* . A comparison with Eq. (47) indicates that the solvent
content at the second gel point and the polymer content at the first gel
point depend on kf/r, m and b in a similar way. However, the exponents are
different; for b ≥ 1 we always have bm > m – 1. It follows that the second gel
point is more distant from the right-hand edge of the concentration range
than the first gel point from the left edge, i.e.

ϕ ϕB2 A1
* *> (51)

at the same value of equilibrium constant k. (Also, ϕ B2
* increases to a larger

extent than ϕ Α1
* if the stoichiometric ratio b increases.) Moreover, a detailed

mathematical analysis has shown that at sufficiently large values of kf/r the
dependence of ϕ Β2

* on the multiplicity m can be opposite to that of ϕ Α1
* . In

that case, the influence of (m – 1) in Eq. (43) dominates over the effect of
the slow growth of conversion α with concentration. This anomaly is illus-
trated by the intersection of curves for different values of m at the same b in
the upper right corner of Fig. 2.

If a gel point moves toward ϕ A max,
* , then the slope of the function f(ϕ A

* )
(Eq. (48)) tends to zero. Therefore, the value of ϕ A

* becomes considerably
more sensitive to a change in k or f/r than it is the case at the periphery of
the concentration range.

Number Density of Unassociated Molecules A and B

Before we deal with relations specific for the gel regime, we turn our atten-
tion to “monomer” concentrations pA, pB and their product. Our consider-
ations will relate to the overall composition range with no principal dis-
tinction of the gel region.

According to the Flory theory of chemical gelation, the number density
of the unreacted macromolecules achieves a maximum at the gel point
and diminishes with increasing polymer concentration in the gel region.
The same holds for the concentration of finite branched entities which
are in chemical equilibrium with the unreacted molecules. Semenov and
Rubinstein4 have shown that on polymer association the sol species exhibit
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the same behavior. This conclusion is valid if no solvent is incorporated
into the junctions. To analyze the case of solvent cooperation (b > 0), we
combine Eqs (28) and (30) to obtain

I p p r1 ( , ) / .A B A= ϕ (52)

We differentiate Eq. (52) and rearrange substituting from our model rela-
tions. After all we have

d

d

d

d
A

A

B

A

ln
( )

ln
.

p
rI b

fmz
mz

y

ϕ ϕ
= −

+
−

2
1

1
(53)

It follows from Eqs (37) and (43) that the first term on the right-hand side
is zero at the gel point and negative in the gel region. The other term is
positive if b > 0. Then the slope of ln pA is positive at the gel point and the
maximum of pA shifts into the gel region or it disappears at all (at the 2nd
gel point or even, for higher b, also at the 1st gel point).

As it is seen from Eq. (29), the clustering equilibrium depends also on the
concentration of nonassociated B molecules. For finite clusters, the treat-
ment is simplified by strict correlation of the indices i and j in the cluster
formula AiBj due to Eq. (25). Thus we may transform Eq. (29) into the form

v K q pl l
l= A (54)

where l is the number of junctions in the cluster and

q p pm bm= −
A B

1 . (55)

We see that except small clusters, the equilibrium is fully determined by the
variable q. Let us look at its dependence on ϕ A . Substituting from Eq. (22) and
using Eqs (13) and (34), we can express q in terms of z

q kf z zm= +− − − +( ) ( ) .( ) ( )1 11 ψ (56)
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By differentiation, we have

d
d

d
dA A

ln
( )

.
q z

z z
z

ϕ
ψ

ϕ
= −

+
1

1
(57)

The derivative on the left-hand side is zero: (i) in the two gel points (z = z*)
due to Eq. (44b); this corresponds to two maxima of q; (ii) at the point
where dz/dϕA = 0. This maximum of z can be found from the derivative of
Eq. (22) with respect to ϕA; it results

ϕ βA of(max ) ( )/ .z m bX= − −1 (58)

Comparing with Eq. (49), we find a small difference in ϕA. Thus, the maxi-
mum in z, corresponding to a minimum in q, is not far from the maximum
in the function f (ϕ Α

* ); see Eq. (48).
In Fig. 3, the relations of the free molecule concentrations, pA and pB, to

free group concentrations, yA and yB, and to the parameter q are illustrated.
The dependence of the free group concentration yA on the polymer con-

tent ϕA (curve 1) is given by the relation
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FIG. 3
Number densities of nonassociated functional groups and isolated molecules as function of
composition. r = 100, f = 10, k = 40, m = 4, b = 1. 1 yA, 2 yB = pB, 3 pA, 4 log q
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y f r XA A A A( ) ( / ) ( ) .ϕ ϕ ϕ= − (59)

The curve approaches a linear function at the edges of the concentration
range but in the middle it deviates downwards, as association into junc-
tions proceeds. Essentially similar is the behavior of the dependence of yB
on ϕB (curve 2); however, its relative deflection in the middle is smaller
(r/bf) times and hardly visible in the graph. The same curve describes pB, see
Eq. (35).

The relative bending in the plot of pA vs ϕA (curve 3), is the f-th power of
the relative deflection of yA in curve 1, see Eq. (34). In this way, a maxi-
mum with a minimum may sometimes appear on the pA-curve, as it is seen
in Fig. 3.

The variable q, Eq. (55), is the product of powers of concentrations pA and
pB, which have shown antagonistic trends in the preceding curves. This is
reflected in the dramatic course of curve 4, displaying q vs ϕA. As has been
predicted above, one finds maxima in the two gel points and a deep mini-
mum near the middle of the gel range.

Equation (55) can be used to modify the moment function relation, Eq.
(30)

I m l K q pn
n

l
l

l= + −∑[ ( ) ]1 1 A (60)

where the summation is performed over all finite clusters. Therefore, the
characteristic features of the function q(ϕA) must be reflected somehow in
the shape of the curves 〈 〉i n vs ϕA and 〈 〉i w vs ϕA, as will be shown in the fol-
lowing graphs.

The Gel Region

Adhering to the terminology used in the covalent gelation theory, we call
“sol” the ensemble of finite polymer entities embedded in the association
network (gel). We proceed now to the problem of polymer partition be-
tween the sol and gel in the gel regime. An association structure may be
thought to consist of two kinds of units, subchains and junctions. In the
gel region, we have to distinguish units that are part of a finite cluster from
those which belong to the network. To find guidance, we consider that we
are passing successively from a unit to the neighboring one along the struc-
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ture. Then we may find infinite continuation of a path in the network, but
not in a sol particle. In the theory of covalent gelation, the probability that
a bond issues no continuation to infinity is called extinction probability
and is given the symbol v (see, e.g., ref.11). In the present model of multiple-
junction association, the “bond” is understood as the passage from a func-
tional group of molecule M1 to that of molecule M2, both functional groups
being part of the same multiple junction J. Let us assume that this “bond”
does not produce any continuation to infinity, the probability of this event
being v. Now let us consider the consequences of our postulate in molecule
M2, which contains (f – 1) functional groups outside the junction J. None of
these groups belongs to an infinite structure either. For any of them, this
can be accomplished in two ways: The functional group is either unassoci-
ated (with probability 1 – α), or, if incorporated into a junction of multi-
plicity m, it shares the junction with m – 1 groups of other molecules with
no continuation to infinity (probability αvm–1). All of the f – 1 groups of
molecule M2 have to comply with one of the two requirements declared;
the probability of this complex event constitutes an alternative expression
to v. Thus, using Eq. (21), we write

v
zv

z

m f

= +
+









− −
1

1

1 1

. (61)

This equation serves for finding v. It always has a trivial solution v = 1. An-
other root v occurs in the physical range (0;1) if ψz > 1, i.e. with z in the gel
region.

Using extinction probability, we can calculate interesting parameters of
the sol–gel coexistence. The fraction of macromolecules contained in the
sol is equal to the probability that all functional groups of a given
macromolecule provide finite continuation only:

w
zv

z

m f

s = +
+









− −
1

1

1 1

(62)

or

w v f f
A
s = −/ ( ) .1 (63)

Multiplying by ϕA, we obtain the respective concentration ϕ A
s . In a similar

way, we transform the gel fraction w wA
g

A
s= −1 into the concentration ϕ A

g .
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The number density of junctions formed in the sol is equal to the overall
junction number density multiplied by the probability that all the m
“bonds” ascribed to the junction lack continuation to infinity:

X m X m v ms/ ( / ) .= (64)

Therefrom, Xs and Xg as well as αs and αg can be easily calculated:

α αs = − −v m f f/ ( )1 (65)

( )  α αg = − − −1 1 1v vm f f/ ./ ( ) (66)

For y A
g (concentration of nonassociated functional groups in gel), we have

y y y f r v X vf f m
A
g

A A
s

A= − = − − −−( / ) [ ] ( ) ./ ( )ϕ 1 11 (67)

The fraction of solvent B absorbed in the gel junctions is

w bXB
g g

B= / .ϕ (68)

We have assumed that in the sol clusters no rings are formed. Therefore
the consideration following Eq. (37) can be adapted also for the quanti-
ties related to the sol and an analogue of Eq. (36) can be written (see also
Eq. (27))

v r m X mi
s

A
s s∑ = − −ϕ / ( ) / .1 (69)

In the gel, the existence of rings must be acknowledged and the counter-
part to Eq. (69) reads

0 1= − − +ϕ A
g g g/ ( ) /r m X m C (70)
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where Cg is the concentration of rings in the gel. Then the relative amount
of rings per functional group of gel is

γ α= − −( ) / / .m m f1 1g (71)

The definitions of a great majority of quantities introduced in this para-
graph can be extended to the whole composition range ϕA ∈ (0;1) if we put
v = 1 outside the gel region. This is equivalent to including cluster ensem-
bles existing in the pregel regime into the sol concept. In the conclusion we
calculate the average association numbers of the sol clusters. It can be
proved that the first-moment function of the sol follows a relation analo-
gous to Eq. (28)

I r1
s

A
s= ϕ / . (72)

Other moment functions of the sol can be obtained using relations

I I p p p0 1
s s

A A Bd const.]= =∫ ( / ) [ (73)

I I p p2 1
s s

A B const.] .= =( / ln ) [∂ ∂ (74)

In a way similar to that used for systems outside the gel region we obtain

〈 〉 = +
−

−

−
i

zv
m zv

m

mn
s 1

1

1

1( / )ψ
(75)

〈 〉 = +
−

−

−
i

mzv
zv

m

mw
s 1

1

1

1ψ
. (76)

If generalized as described, the number and mass averages display singu-
larities in the two gel points. At both of these points, the number average
assumes the same value
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〈 〉 = −i f mn
s ( ) / .1 ψ (77)

At the gel points, the parameters mentioned above are independent of the
b-value and therefore not influenced by the entry of solvent into junctions.
The mass average association number diverges at the gel points. Both types
of averages display minima for ϕA corresponding to the maximum of z (see
Eq. (58)).

The concentration dependence of some sol–gel parameters, extended to
the whole composition range, is depicted in Figs 4 and 5. Curve 1, Fig. 4
displays the non-extinction probability, 1 – v. This function assumes
non-zero values in the gel region only. The position of its extreme on the
ϕA-axis corresponds to that of the function z(ϕA). Curve 1 also roughly de-
scribes the dependence of the gel fraction wA

g , the values of which are
smaller just by a few percent than those of 1 – v.

Curve 2 shows the dependence of ϕ A
s on ϕA. Outside the gel region, the

curve coincides with the straight line ϕ A
s = ϕA, while in the network region

the difference between the two lines is equal to ϕ A
g . The curve 3 (ϕ B

s vs ϕA)
can essentially be described in an analogous way; however, the curvature in
the gel region is hardly observable as the amount of solvent present in the
gel junctions is very small in comparison with the amount of polymer units
constituting the network.
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FIG. 4
Sol parameters as function of composition. r = 100, f = 10, k = 40, m = 4, b = 1. 1 1 – v, 2 ϕA
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As has been predicted, the dependence of 〈 〉i w
s on ϕA (curve 4) exhibits a

minimum at the same volume fraction as the dependence of q (see curve 4,
Fig. 3). The maxima of q, appearing in the two gel points are transformed
by Eq. (60) with n = 2 into singularities where 〈 〉i w

s diverges.
In Fig. 5, curve 1 depicts the dependence of the overall degree of associa-

tion α on ϕA in the whole concentration range. Curves 2 and 3 allow a com-
parison of the association degree occurring in the sol (αs) with that found
in the gel (αg). Both these quantities combine into the overall α (curve 1)
according to the formula

α α α= +w wA
s s

A
g g . (78)

Curve 4 displays the population of rings in the network, as calculated from
the balance equation, Eq. (71). Curve 5 depicts the fraction of solvent in-
corporated in the associated functional groups of the gel. The curve asym-
metry is due to a decrease in the overall solvent content in the system with
increasing polymer content.

In the next two figures the effect of the stoichiometric ratio b on the
gelation parameters ϕ A

g and 〈 〉i n
s is shown. Figure 6 deals with ϕ A

g , the con-
centration of the gel portion as a function of system composition (the
curves are defined in the gel region only). If the junctions are solvent-free,
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FIG. 5
Sol and gel parameters as function of composition. r = 100, f = 10, k = 40, m = 4, b = 1. 1 α, 2
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there is a single gel point. Here starts ϕ A
g its growth and rather early it ap-

proaches the line ϕ A
g = ϕA, which means that nearly all macromolecules are

incorporated into the gel. Moreover, from Fig. 7 we see that the average as-
sociation number decreases soon to unity, which indicates that the minute
amount of sol present is not associated. If the entry of solvent is unavoid-
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FIG. 7
Number-average association number of the sol 〈 〉i n

s as a function of composition at various values
of solvent proportion b. r = 100, f = 10, k = 40, m = 4, b = 1. Curves are labeled by b values

FIG. 6
Volume fraction of polymer present in the network as a function of total polymer volume frac-
tion at various values of multiplicity m and solvent proportion b. r = 100, f = 10. Dashed lines
m = 2, full lines m = 4. Curves are labeled by b values
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able for the junction formation (b > 0), lack of solvent manifests itself on
increasing ϕA. Then the gel content decreases strongly until the network
disappears at the second gel point. At its maximum, ϕ A

g is smaller at larger b
values. The content of sol increases with b and, as it is seen from Fig. 7, the
same is true for its association number. In Fig. 7 we find the confirmation
that in the two gelation points the number average of i is identical and in-
dependent of the b value. In these singular points, the discontinuities in
the curve slope are symmetrical, i.e. the two derivative limits differ in sign,
but not in the absolute value.

DISCUSSION

Remarks on the Derivation Procedure

Following Veytsman, our initial approach on derivation was focused on
equilibrium between associated and free functional groups, irrespective of
the cluster size and network presence. Owing to that the resulting thermo-
dynamic mixing functions show no singularity in dependence on composi-
tion (see Eqs (18), (19) and (20)). This also concerns global association char-
acteristics X, yA and yB and the quantities derived therefrom, like α, z, pA, pB
and q. Quantities characterizing the sol–gel relationships and based on the
extinction probability v can have their validity extended to the whole com-
position range, as described in the text following after Eq. (71). Then they
exhibit singularities in the gel points: most of them are continuous, but
jumps appear on the first and higher derivatives with respect to ϕA. As re-
gards the ring population γ, jumps are not found on the first derivatives,
but only on the second and higher ones. The weight-average association
number 〈 〉i w

s tends to infinity approaching from either of the two sides of a
gel point.

It is remarkable that for b = 0, our expressions for the mean association
number and for the gel point condition (see Eqs (38), (39) and (43)) are the
same as those obtained by a procedure based on the association number
distribution. In the calculation of the latter, the absence of rings from clus-
ters was postulated, while Veytsman’s approach used by us is intrinsically
free of conjectures on cluster structure. The assumption of ring-free clusters
has apparently been brought into our calculations later in Eq. (33), that ex-
presses the probability that a given macromolecule is unassociated, and
serves to calculate statistical moments of the association number (see Eqs
(31) and (32)). Indeed, Eq. (33) is exact only if the isolated macromolecule
is devoid of intramolecular association. Let us admit for a while that multi-
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ple association junctions occur in some of the isolated chains, producing
rings. Then the concentration pA is the sum taken over linear and cyclic
“monomer” species. If the cycling parameter c is small enough, at most one
junction is expected in a molecule and Eq. (34) may be replaced by

p I
cz

z

m

fA = +
+1

1

1( )
. (79)

Then, using Eq. (31), an additional term in c appears on the right-hand side
of Eq. (36). This means that in the pregel regime, rings exist in clusters,
consuming part of the junctions. Thus the number density Σνi of all poly-
mer species is higher by a term equal to ring concentration. We may also
calculate I2 using Eq. (32) and we find that 〈 〉i w is reduced due to the pres-
ence of ring formation term in the denominator of Eq. (39). In this way a
correction is introduced into the condition Eq. (44) of the gel point, result-
ing in an increase in the critical value of z*. We see that ignoring rings in
clusters includes the use of Eq. (33).

Effect of the Solvent Bound in Junctions

The subject proper of this work has been the effect of the presence of sol-
vent molecules in association junctions, as expressed by the stoichiometric
ratio b. If b increases at constant f, m and k, different parameters display dif-
ferent trends. As regards the position of the characteristic points of the gel
region, ϕ A1

* increases with b while ϕ A2
* decreases, until the network region

disappears at a certain b. The extremes found inside the region become less
pronounced and shift toward lower ϕ A

* . The variable z decreases with b (cf.
Eq. (22)). A similar behavior is then observed with quantities increasing
with z; therefore X, α, wA

g , ϕ A
g , αg decrease with b in the whole composition

range, but q, 〈 〉i n
s , 〈 〉i w

s do so outside the gel region only. On the contrary, pA
increases with b in the whole range, while q, v, wA

s , 〈 〉i n
s , 〈 〉i w

s , ϕ A
s , αs do so

inside the network region.
On comparing different systems in their gel points, we find that the influence

of b is considerably limited. From Eq. (44b) we see that z* ≡ z*(f,m) is inde-
pendent of b and assumes the same value in the two gel points ϕ A1

* and ϕ A2
* .

The same is found for parameters that can be expressed in terms of z*, f and
m, viz. for q*, α* = αs*, αg* and 〈 〉i n

s* (cf. Figs 1 and 7). The same is valid for
the derivatives of these quantities with respect to z, but not for the deriva-
tives with respect to ϕA.
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An alternative view on the influence of solvent incorporation involves
finding values of equilibrium constant k necessary to achieve the same
value of system property for b = 0, 1, 2, etc. For instance, if the property in
question is the gel point composition ϕ A

* , the increase in k* with b can be
visualized by drawing vertical lines in Fig. 2. The difference in k* is small
for various b-values at low gel point concentrations, but increases strongly
with ϕ A

* , the rates of increase being larger for smaller values of junction
multiplicity.

CONCLUSIONS

We have found that the shape of the composition dependence graphs
changes strikingly if solvent is present in association junctions (b > 0).
Firstly, the function α(ϕA) is zero not only for ϕA = 0, but also for ϕA = 1,
showing a maximum near the middle of the compositional range. This re-
sults in the existence of two gel points, delimitating the gel region. A maxi-
mum also appears on the composition dependence of some network-
characterizing parameters, e.g. wA

g , the proportion of the polymer constitut-
ing the gel. Minima are found for wA

s and other parameters pertaining to
the coexisting sol as well as for the constant k*, required for having a gel
point at a composition ϕ A

* .
In the two gel points, the degree of association α and related parameters

are independent of b, and there is no difference between their values at the
first and the second gel point. On the other hand, the difference between
the values found at the gel points and those observed in the maximum or
minimum within the gel region decreases with b growing at constant f, m
and k.

If a system has gel-like properties due to the presence of an associative
network, the experimental determination of the second gel point by rheo-
logical methods may be difficult at high concentrations. This is because the
effect of the network on rheology may be overlapped by other phenomena,
e.g. by entanglements. This difficulty could be reduced using shorter chains
for two reasons: (i) the influence of entanglements diminishes due to a de-
crease in chain length, and (ii) at smaller f, the second gel point is shifted
toward lower polymer concentrations.
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